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Abstract

We extend the optimal second-order finite element projection method developed by Gresho

and Chan[1] in order to treat low-Mach number reacting flows using simple/reduced-order

chemistry. The reacting flow formulation considers the zero Mach-number limit for com-

bustion allowing for large heat release and the concomitant excursions in temperature and

density while avoiding the need for a fully-compressible numerical treatment. In order to

avoid spurious oscillations due to non-smooth data, a flux-corrected advection algorithm

based on an explicit predictor/semi-implicit corrector and characteristic-based limiting is

used. Results are presented for variable density non-reacting/reacting wakes and illustrate

the process of bluff-body flame stabilization.
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1 Introduction

The incompressible/low-Mach number flow regime spans a spectrum of applications ranging

from vehicle aerodynamics and flow-induced noise to mold-filling and chemically reacting

flows. In this work, we extend Gresho and Chan’s optimal second-order projection method[1]

to treat low-Mach number reacting flows.

The low-Mach number regime is observed in devices such as pumps, burners, internal

combustion engines (under normal operating conditions), and CVD reactors. In low-Mach

number flows, the pressure remains nearly constant in space and exhibits only small excur-

sions about the mean pressure. Acoustic waves in such flows are typically weak, contain a

small fraction of the kinetic energy, and equilibrate rapidly.

We begin with the simplified reacting flow formulation by Majda and Sethian[2] in which

the effects of acoustic waves are removed. As demonstrated by Lai[3, 4] this approach yields

a computational advantage over a fully-compressible treatment that scales roughly as the

inverse of the Mach number, i.e., 1/M . We also note in passing the acoustically-filtered

low-Mach formulation is not new and has been used by many other researchers, e.g., see

Paolucci[5] and Martinez[6].

For our purposes, we assume a premixed fuel with only two species present – un-burnt and

burnt gas. Both the reactants and products are assumed to follow the same γ-law equation

of state and have similar molecular weights. Reactions occur via single-step irreversible

Arrhenius chemical kinetics. Although the effects of acoustic waves have been filtered from

the governing equation, the formulation admits large excursions in temperature and density

consistent with large heat release due to chemical reactions.



In the following section, a brief overview of the formulation and numerical method is pre-

sented. This is followed by computational results that demonstrate the extended projection

method for variable-density non-reacting and reacting wakes flows. Finally, a summary and

conclusions are presented.

2 Formulation

We consider a flow domain Ω with boundary Γ = Γ1

⋃

Γ2. In the low-Mach number limit,

the pressure can be segregated into a bulk thermodynamic part, p̄(t), and a “kinematic”

part, p(x, t), as p̂(x, t) = p̄(t) + p(x, t). In the incompressible limit, ∇ ·u = 0, the kinematic

pressure plays the role of a Lagrange multiplier.

Conservation of species, energy and linear momentum for the reacting flow system are

ρ

{

∂Z

∂t
+ u · ∇Z

}

= ∇ · (ρD∇Z) − kρZ (1)

ρCp

{

∂T

∂t
+ u · ∇T

}

=
dp̄

dt
+ ∇ · κ∇T + q0ρkZ + q

′′′

(2)

ρ

{

∂u

∂t
+ (u · ∇)u

}

= −∇p + ∇ · [µ(∇u + (∇u)T )] + f (3)

where ρ is the mass density, u the velocity, T the temperature, and Z the mass fraction of

the reactants. Fluid properties consist of µ the viscosity, Cp the constant-pressure specific

heat, κ the thermal conductivity, and D the species diffusivity. A body force f is included

in the momentum equations, and in the energy equation, q0 is the reaction-rate heat release

coefficient, k = A exp
(

− E
RT

)

the reaction rate, and q
′′′

the volumetric heat source.



The equation of state is ρ = p̄/RT , where R = Cp/Cv is the ratio of the specific heats,

and the rate equation for the thermodynamic pressure is,

dp̄

dt
=

(γ − 1)

VTot

∫

Ω

(q0kρZ + ∇ · κ∇T )dΩ. (4)

where VTot is the total domain volume. Combining energy, mass conservation, and using

Eq.(4), a div-constraint is constructed as

∇ · u =
1

γp̄

{

−
dp̄

dt
+ (γ − 1)(q0kρZ + ∇ · κ∇T )

}

. (5)

Boundary conditions for the system include specified velocity, temperature and species

conditions on Γ1, and specified traction boundary conditions, heat and mass fluxes on

Γ2. Initial conditions consist of prescribed velocity, temperature and species distributions,

u(x, 0) = u0(x), T (x, 0) = T0(x), Z(x, 0) = Z0(x). The initial thermodynamic pressure is

specified, and the density computed as ρ0(x) = p̄0/RT0(x).

The numerical solution method is based on the Galerkin finite element method with sev-

eral modifications that include pressure stabilization, balancing tensor diffusivity for second-

order temporal accuracy in the explicit advection, and linearization of the mass and en-

ergy reaction rate terms. An explicit forward-Euler predictor is used in conjunction with

a trapezoidal-rule correction for the overall system of equations. Due to space limitations,

we omit the details of the forward-Euler predictor, and begin with the species transport

equation, using predicted values of density ρ̃n+1 and reaction rate k̃n+1,

[

M̄ + θ∆t
(

K̃Z + R(1, ρ̃n+1, k̃n+1)
)]

Zn+1 =

∆t[(1 − θ)ṁn + θṁn+1] +

[

M̄ − ∆t(1 − θ)
(

K̃Z −R(1, ρn, kn)
)]

Zn
− ∆tA(ρn,un)Zn. (6)



Here, R(·, ρ, ·) is a generalized reaction-rate operator that accepts as arguments a heat release

rate, density, and linearized reaction rate. A(·, ·) is a generalized advection operator, K̃Z is

the mass diffusion operator evaluated at n + 1/2, and M̄ is the mass matrix evaluated using

ρ̄ = (ρn + ρ̃n+1)/2. ṁ represents additional mass source/sinks. The choice of time-centering

in R(·, ρ, ·) is made to ensure stable ODE’s given 0 ≤ Z ≤ 1.

The energy equation corrector is,

[

M̄T + θ∆t

{

K̃T −R

(

q0, ρ̃
n+1,

(

∂k

∂T

)n)

Zn+1

}]

T n+1 =

∆t[(1 − θ)Qn + θQn+1] +

∆t(1 − θ)[ ˙̄p
n
Mu

L + R (q0, ρ
n, kn) Zn] +

∆tθ[ ˙̄p
n+1

Mu
L + R

(

q0, ρ̃
n+1, kn

)

Zn+1] +

[

M̄T − ∆t(1 − θ)

{

K̃T −R

(

q0, ρ
n,

(

∂k

∂T

)n)

Zn+1

}]

T n
− ∆tA(ρn,un)T n, (7)

where M̄T is the thermal capacitance matrix computed using ρ̄ and Cp. Mu
L is a unit row-sum

lumped mass matrix.

The momentum corrector is,

[

M̄ + θ∆tK̃n+1/2

]

ũn+1 =

∆t
[

(1 − θ)Fn + θFn+1
− A(ρn,un)un

− [M̄M̄−1

L ]CP n
]

[

M̄ − (1 − θ)∆tK̃n+1/2

]

un. (8)

The thermodynamic pressure is

p̄n+1

[

1 − θ∆t

{

q0

(γ − 1)

VT0t

Nnp
∑

i=1

[

R

(

1

RT n+1
, 1, kn+1

)

Zn+1

]

i

}]

=

∆t(1 − θ)

{

q0

(γ − 1)

VT0t

Nnp
∑

i=1

[R(1, ρn, kn)Zn]i

}

, (9)



where Nnp is the number of nodes in the mesh.

In order to avoid non-physical oscillations due to steep gradients and reaction source

terms, a non-linear, characteristic-based, monotonicity-preserving advection algorithm mo-

tivated by flux-corrected transport (FCT)[7, 8, 9] has been developed. An explicit advection-

only step is used as the low-order predictor with an “operator” limiting procedure based on

preserving monotonicity. The limiting is based on values obtained by examining advective

field values in the backward characteristic direction as shown in Figure 1(a). Once the lim-

ited operator is obtained, A(·, ·), a semi-implicit corrector is used to advance the solution in

time.

The monotonicity-preserving advection treatment is demonstrated using a Re = 4000

time-dependent, heated, momentum-driven jet. Figure 1(b) shows temperature-time history

points during the startup phase with a 100K step-change in the initial temperature field.

Figure 1(c) shows a snapshot of the temperature field for the heated jet relative to the

time-history points. The advective treatment preserves the fourth-order phase accuracy

of the finite element method and does not introduce excessive cross-stream diffusion as

demonstrated by the sharp change in temperature at the base of the starting jet, and the

formation of the Kelvin-Helmholtz shear layer shown later in time in Figure 1(d).

3 Results

This section summarizes results of computations carried out for reacting and non-reacting

wake flows behind a cylinder. Initial time-accurate computations were carried out for a

Re = 100, Sc = 1 flow past a circular cylinder for the non-reacting case using a steady



parabolic inlet velocity profile with no-slip, no-penetration boundary conditions imposed on

the cylinder, upper and lower walls. A constant non-dimensional temperature boundary

condition is applied at the cylinder wall. At t = 1 a steady mass concentration Z = 1 is

prescribed at the upstream boundary.

Figure 2 shows snapshots of the temperature, mass fraction, z-vorticity, and pressure

field during the vortex-shedding cycle for the non-reacting case. In contrast, Figure 3 shows

a snapshot at the same point during the shedding cycle for the reacting case. Here, the

differences in the wake are most clearly identified in the temperature and mass fraction.

In ramjet and turbojet combustors, the flow velocities are sufficiently high relative to

the flame speed that it is necessary to provide some sort of flame stabilization. This is

typically done by inserting a bluff-body in the flow causing recirculation and resulting in a

continuous ignition of the air-fuel mixture (see for example Glassman[10] pp. 206 – 215). A

prototype calculation to illustrate the effect of bluff-body stabilization on a vortex street was

carried out for Re = 1000. Here, the conditions were similar to the Re = 100 calculations,

but a cylinder temperature of 1000 K was imposed. Figure 4 (a) shows snapshots of the

temperature, mass species and density during the initial vortex-shedding phase. In Figure

4 (b), a snapshot of the fields is presented after the wake has begun to stabilize. Note the

formation of a nearly symmetric wake behind the cylinder and the absence of any coherent

Karman vortex street after approximately 1.35 seconds – or ∼ 5 isothermal shedding cycles.



4 Summary & Conclusions

A new finite element projection method for treating the simplified low-Mach reacting flow

equations which is based on extensions to Gresho and Chan’s optimal second-order projection

method has been presented. A new time-dependent flux-correction technique for monotonic-

ity preserving advection has been introduced and successfully applied to chemically reacting

flows. The extended projection method has been demonstrated to be stable and robust for

relatively high Reynolds number reacting flows. The extension to more complex chemistry

with multiple species appears to be feasible in the current projection-based computational

framework.
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Figure 1: Advective treatment demonstrated using a Re = 4000 heated, momentum-driven

jet: (a) Characteristic-based limiting, (b) Temperature time histories at nodes 10, 26 and

50, (c) Snapshot of starting momentum-driven jet at t = 0.15, (d) Snapshot of temperature

after the onset of the Kelvin-Helmholtz shear instability.

Figure 2: Non-reacting wake (a) Temperature, (b) Mass Fraction, (c) Vorticity, (d) Pressure.

Figure 3: Reacting wake showing (a) Temperature, (b) Mass Fraction, (c) Vorticity, (d)

Pressure.

Figure 4: Re = 1000 reacting wake (a) Snapshot at t = 2.39s, (b) Initiation of bluff-body

stabilization at t = 3.75s.
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